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Using a 9-bit Software UART with Stellaris® Microcontrollers 
ABSTRACT 

Extend the functionality of the standard hardware UART available on Stellaris® microcontrollers by using the 
9-bit UART add-on. This practical software solution provides a way to distinguish between an address or data 
character. The code described in this application report can be downloaded from 
http://www.ti.com/lit/zip/SPMA032. 
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1 Introduction 

The Universal Asynchronous Receiver Transmitter (UART) is a widely used serial communications peripheral 
used in many applications for connection to legacy devices and is present on all Stellaris® microcontrollers. 
Some systems require the additional functionality of a 9-bit UART, with automatic address detection. The 9-bit 
software UART uses a ninth bit to differentiate between a data or address character. The auto address 
detection allows the user to program a specific address that is used to determine if the received data is 
supposed to be processed or discarded. The 9-bit UART was written using the standard UART DriverLib API. 
The 9-bit UART uses the same function structure as the standard UART, but adds the NB_ prefix specifically 
for 9-bit UART calls. This application note describes the 9-bit UART software add-on in detail. 

 
2 9-Bit UART Initialization 

There are five initialization steps for the 9-bit UART: 
1. Enable UART and GPIO peripherals. 
2. Configure the GPIO pins for UART function. 
3. Set up the UART hardware. 
4. Enable the UART Rx interrupt. 
5. Customize the user programmable address. 

 
2.1 GPIO 

The GPIO setup is not included in the 9-bit UART API functions and must be done explicitly by the user. The 
following steps are necessary to enable the UART and GPIO peripherals: 
1. Enable the appropriate GPIO port for the UART0 or UART1 Tx and Rx pins. 
2. Configure the UART0 or UART1 GPIO pins for UART operation. 

a. Configure the GPIO pins for standard push-pull operation. 
b. Set the pins to be peripheral controlled. 

3. If your part has pin muxing, set the pin mux for your device. 

http://www.ti.com/lit/zip/SPMA032
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Note: See the corresponding microcontroller data sheet for your device to find the correct UART GPIO port 
and pins. 

 

2.2 UART 
The 9-bit UART API supports the use of only one UART port. You can use either UART0 or UART1, but not 
both ports. 

Note: For 9-bit UART operation, you must only use the DriverLib function calls that have the designated 
NB_ prefix. 

There are two functions used to configure and initialize the 9-bit UART: 
• NB_UARTConfigSetExpClk() 

Sets up baud-rate, number of data-bits, and number of stop-bits. 
• NB_UARTEnable() 

Enables the UART hardware and the UART receive interrupt. 
 
2.3 UART Interrupt 

For proper operation of the 9-bit UART, enable the UART Rx interrupt using the NB_UARTEnable() function 
which enables the UART hardware interrupts on the nested vector interrupt controller (NVIC), and also enables 
the receive interrupt on the UART hardware. You must enable the processor interrupts and explicitly add the 
“NB_UARTIntHandler” interrupt handler to the interrupt vector table. 

The UART interrupt can be configured to call a user function. If the NB_USER_INT_HANDLER macro is defined, 
then the NB_UserIntHandler() function will be called in the UART interrupt handler. 

Note: The NB_UserIntHandler() is called in an interrupt context. Do not do time-consuming operations 
in this function. 

 
2.4 Programmable Address 

Use the following functions to set the 9-bit UART's single programmable address: 
• NB_UARTAddressSet() 

Sets the address for the UART hardware. 
• NB_UARTAddressGet() 

Returns the current address of the UART hardware. 

This address is used by the UART to decide when to acknowledge or discard data. You must properly set the 
device address prior to using the 9-bit UART. Unlike some hardware implementations of the 9-bit UART, the 
character used as the address is allowed to be received as a data. For details on receiving a character, see 
the “Receive” section for more information. 

 
3 9-Bit UART Function 

The 9-bit UART includes two sets of transmit functions; one set of functions is used to transmit data and the 
other set is to transmit an address. The received data is handled by the receive ISR and a software buffer. 
For 9-bit UART operation, you must only use the DriverLib function calls that have the designated NB_ prefix. 

Note: See the API Functional Description in the accompanying source code package for this application 
note for more information on these functions. 

 
3.1 Transmit 

The 9-bit UART API includes the following functions for sending addresses and data: 
• NB_UARTBusy() 
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Checks if the UART is busy sending or receiving another character. 

9- Bit UART Function 

• NB_UARTAddrPut() 

Puts an address character in the transmit register if there is space available. If there is no space available, 
it blocks the write of the address character until space is available. 

• NB_UARTAddrPutNonBlocking() 

Puts an address character in the transmit register if there is space available. If there is no space available, 
it returns an error code. 

• NB_UARTDataPut() 

Puts a data character in the transmit register if there is space available. If there is no space available, it 
blocks the write of the data character until space is available. 

• NB_UARTDataPutNonBlocking() 

Puts a data character in the transmit register if there is space available. If there is no space available, it 
returns an error code. 

Note: The 9-bit UART does not use a transmit FIFO. A single hardware register is used to transmit the data 
out of the UART. 

The parity setting is used to differentiate between the send data and send address functions. The send data 
function sets the parity to Stick Zero to make the ninth bit of the UART transfer a 0 and the send address 
function sets the parity to Stick One to make the ninth bit of the UART transfer a 1. After setting the parity, 
the 9-bit UART functions use standard DriverLib function calls to send the character through the UART 
hardware. 

The logic diagrams below show how the data and address transfers are performed. Figure 1 shows an address 
transmission (set parity bit to a 1) and Figure 2 shows a data transmission (parity bit is a 0). These diagrams 
have the UART configured with one stop bit. 

 
 

 
Figure 1. Sample Address Transfer 
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Figure 2. Sample Data Transfer 

 
3.2 Receive 

The following 9-bit UART API functions are used for receiving characters: 
• NB_UARTDataAvail() 

Checks if there is any data in the software receive FIFO. 
• NB_UARTDataGet() 

Returns a character if there is one available in the software receive buffer. If there is no character available, 
it blocks the read of the address character until space is available. 

• NB_UARTDataGetNonBlocking() 

Returns a character if there is one available in the software receive buffer. If there is no character available, 
it returns an error code. 

To properly receive UART characters in 9-bit UART mode, an interrupt must be generated every time a 
character is received so that the software can determine if the character received was data or an address. 
The interrupt handler checks the current state of the parity polarity bit and the parity error bit. The parity polarity 
is set using the EPS bit in the UART Line Control register. If there was no parity error, then the parity bit 
received is the same as the current UART parity setting. If there was a parity error, then the bit received is 
the opposite of the current UART parity setting. The truth table in Table 1 summarizes the logic used for the 
9-bit UART. 

Note: The truth table shows the logic used to determine if data or an address was received. The EPS bit 
sets the Stick Parity setting. If EPS = 0, then the parity bit is 1; if EPS = 1, then the parity bit is 0. 

 
Table 1. 9-bit UART Truth Table 

 
EPS Bit Parity Error Address or 

 

Data 

0 0 1 

0 1 0 

1 0 0 

1 1 1 

The 9-bit UART code provided performs the following actions when a character is received: 
1. Enter the UART interrupt once a character is received. 
2. Read the character from the UART receive register. 
3. Check to see if the character is an address. 
4. If the character is an address, check if it matches the programmed UART address. If there is an address 

match, then set the address match flag to indicate that data should be added to the receive FIFO. If the 
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character is data, check if the address match flag is set. If the flag is set then add the data to the receive 
FIFO. Otherwise, discard the data. 

1. Clear the interrupt request. 
2. Return. 

 
4.2 Receive Buffer Configuration 

A software circular FIFO buffer is implemented for received characters. The default size of this buffer is 16 
characters. The size is configured by a definition in the nb_uart.h file in the section labeled, “Receive buffer 
size configuration.” The #define is shown below. This value is user-selectable, and must be greater than or 
equal to 1 to ensure correct operation. 

 
#define RX_BUFFER_SIZE 16 

4 9-Bit UART Limitations 
The software-based 9-bit UART add-on works on top of the DriverLib uart.c and uart.h files. It uses a specific 
configuration of the UART to function as a 9-bit UART. This includes disabling the Rx and Txs FIFOs, enabling 
the receive interrupt, enabling stick parity, and using 8-bit data. 

 
5 Application Information 

The 9-bit UART software triggers a UART receive interrupt every time a character is received. The maximum 
interrupt process time is 93 cycles (69 cycles to process the interrupt plus 24 cycles to enter and exit the 
interrupt). If valid data is received, the data will be available in the receive buffer prior to calling the 
NB_UserIntHandler() function or once the interrupt exits. This cycle time for the interrupt assumes that 
the NB_UserIntHandler() function is not being called. 

To put a character into the UART Tx register and initiate a transfer takes a maximum of 69 cycles. This 
assumes that the transmit logic is not already transmitting. 

Note: You cannot use the transmit or hardware receive FIFOs with the 9-bit UART software solution. 

These cycle times were calculated using the Keil RealView® Microcontroller Development Kit (MDK) at the 
default code optimization level. 

6 API Functional Description 
The detailed API functional description is available in the source code package for this application note. 

 
7 Conclusion 

The software-based 9-bit UART add-on can be used on any Stellaris® microcontroller to extend the functionality 
of the standard hardware UARTs available to an application. When the ninth bit is required to distinguish 
between an address or data character, the software-based 9-bit UART add-on provides a practical software 
solution. 

 
8 References 

The following are available for download at www.ti.com/stellaris: 
• Stellaris microcontroller data sheet, Publication Number DS-LM3Snnn or DS-LM3Snnnn (where nnn or 

nnnn is the part number for that specific Stellaris® family device) 
• Stellaris® Peripheral Driver Library User's Guide, Document order number SW-DRL-UG 
• Stellaris Peripheral Driver Library, Order number SW-DRL 
• Source code for application note AN01280 - Using a 9-bit Software UART with Stellaris® Microcontrollers 
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